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SECTION I 
SUMMARY 

The purpose of this phase of the Ballistic Research Labora- 
tory contract was investigation of the feasibility of developing 
a simple analytical model which could be used to predict loads on 
a penetrator in semi-infinite concrete.  In its ultimate applica- 
tion this loading model would be applied to penetrator elements 
in simplified terradynamics computer codes. 

A number of calculations were performed using various pene- 
trator, and penetrator element, geometries and velocities in 
finite difference wave propagation computer codes (hydrocodes). 
Loads, in terms of applied stresses, were saved from these calcu- 
lations.  They were analyzed to develop equations capable of 
predicting the applied stress levels as functions of the pene- 
trator ' s geometry and velocity.  It was determined that loading 
functions could be developed for the relatively simple two-dimen- 
sional geometries considered.  These functions are presented in 
this report along with recommendations for extending the analysis 
to three-dimensional situations and finite thickness targets. 

Drag coefficients were developed from the loading functions 
for relatively simple geometric shapes.  These drag coefficients 
are functions of the reciprocal of the velocity, so that there 
exists a maximum depth of penetration (i.e., a depth beyond 
which the penetrator cannot advance).  The drag coefficients are 
applied to a blunt penetrator and comparisons made between a 
trajectory prediction using them and the trajectory from a hydro- 
code calculation. 



SECTION II 
PRELIMINARY CONSIDERATIONS 

The concrete material behavior model employed for all hydro- 
code calculations discussed in this report is presented in detail 
in Reference 1.  The model basically consists of a hydrostat and 
a yield surface. 

The hydrostat defines a relationship between pressure and 
density and is valid for a good quality concrete with an unconfined 
compressive yield strength of 5,000 PSI.  The hydrostat loading 
curves, up to 60 kilobars (kb), are defined by the following 
equations: 

P = 144y  if  0<y< 0.0025 

P = 0.358 + 78.62 (y-0.0025)  if  0.0025<y< 0.1 

P = 8.0 + 130.0 (y - 0.1)  if  0.1<y< 0.2 

P = 21.0 + 420.0 (y - 0.2)  if  0.2<y<0.3 

In these equations, P is given in kb and y is the excess compres- 
sion defined by: 

y = p/pc -1 

where p  is ambient concrete density (2.2 g/cc) and p is the 
density at some compressed state. 

The yield surface was developed from test data for concretes 
with varying unconfined compressive strengths and is a function of 
pressure and the unconfined strength.  The yield strength is 
specified by the following equations: 

Y = 3 (P + 0.1fV3)/l.l  if  -0.1 fy3<P<fy3 

Y = P + 2/^' if  f,/3<P< 30f' '  c c   —   c 
Y = 30.67f, if  30f' < P c ** 

In these equations f is the unconfined compressive strength of the 
concrete.  The yieldCsurface is a Mohr-Coulomb type with a satura- 
tion level set at 30.67f, (153,000 PSI for a 5,000 PSI concrete). 

This concrete model has been successfully employed in pene- 
tration and breaching calculations and is actively used at the 
Air Force Armament Laboratory, the Air Force Weapons Laboratory, 
the Army Ballistic Research Laboratory and other locations.  The 
model is used in HULL, TOODY, EPIC and other codes with the 
following constitutive relations. 



Deviatoric stresses,  T 
J
, are computed from deviatoric 

strains,  e ^, by using the shear modulus, G. 

dTij = 2 G de
ij 

These deviatoric stresses are limited by the yield surface accord- 
ing to the following equation (in two-dimensional geometry) 

j. = (dT11)2 + (dT22)2 + (dT12)2 + {dT11)(dT22) < Y2/3 

where J^ is the second invariant of the stress deviator tensor. 

If J^ exceeds Y2/3, all deviatoric stresses are reset to lie on 

the yield surface.  When the deviatoric stresses have been reset 
(if necessary) they are added to the pressure to compute the total 
stress as follows: 

ii  d ii _, 
T  =  x  -P 

ij   d ij   . , 
TJ=  TJ,1^3 

This formulation assumes that pressure is positive in compression 
while stress is negative in compression. 

In addition to these equations deviatoric strains and stresses 
must satisfy the following relationships: 

A E dilatation = -(e11 + e22 + e33) 

^ii ii   ,    A /-. e       =   e       +   A/3 

d  ij ij        .    /   . 

d
eii   +  de:22   +  V3   =   o 

P   E   -1/3   (x11   +   T22   +   x33) 

d  ii ii x       =  T       +  P 

d   ij ij        ■    /   ■ 
TJ=TJ   ,   I^D 

dTii + dT22 + dT33 = 0 

In one-dimensional plane loading, the strains satisfy the 
following relationships: 



e11 ^ 0 
e22 = e33 = 0 

e12 = e23 = e13 = 0 

where the direction of loading is the "1" direction.  This means 
that the deviatoric strains satisfy the equations: 

d
e
11 + 2de

22 = 0 

de22   =  de3S = _^dell 

Since deviatoric stresses are proportional to deviatoric strains, 
the deviatoric stresses must be related to each other in the same 
manner as the strains. 

d 22  . d 3 3  .  id 1 l 
T    —  T    — ""a x 

These relations can be put into the yield surface equation for 
plastic flow to obtain 

(V1)2 + (-^T11)2 + (V1 )(-^dT11) = Y2/3 

or 

'V1 = -(2/3)Y 

where the minus sign indicates compressive flow.  Therefore 

dT22 = dT3 3 = Y/3 

and the total stresses in plastic flow then must be 

x11 = -(2/3) Y-P 

T
22
 = T

33
 = Y/3 - P 

From the concrete yield surface equations, P is approximately Y, 
so the total stresses can be written as 

T
11
 = -{2/3)P - P = -1.67P 

.r22 _ T33 = p/3 _ p = -0.67P 

The ratio of stresses, then, in the loading direction to stresses 
in the other two normal directions is given by 

T11 _ T11 _ -1.67 = 2>5 
TO       33     -0.67 



These same final relationships also apply to spherical 
one-dimensional geometry.  In this case 

e22 ^ e33 ^ 0 

but the other equations are identical. 

In one-dimensional cylindrical geometry 

e11 ^ 0 

e22 ^ 0 
e33 = e12 = e23 = e13 = 0 

This leads to the equation 

ell + e22 = _A 

But the dilatation. A, is usually quite small so that the following 
approximation is valid: 

e11 + e
22 = o 

or 

d_ll   . _d 2 2 „„;,    d  33 

therefore 

e11 = - ez^ and e**   =  0 

d_2 2 = _d^ii a„, d^a T^
Z
 = - T

11
 and  T3' = 0 

Placing these relations into the yield surface equation leads to 

(V1)2 + (V1)2 - (V1)2 = Y2/3 
d
Tii = -Y//3 

x11 = -YA/3 - P = -1.58P 

T
3 3 = 0 - P = -P 

T
22
 = YA/3 - P = -0.42P 

By definition, the "1" direction is the radial direction.  The 
"2" direction is the hoop direction.  And the "3" direction is an 
axial direction normal to the plane containing the cylindrical 
cross-section.  The relations just developed then predict that 
the ratio of axial to radial stress is given by 

T 
3 3   -10 



The relationships between stress compDnents, which were 
developed above, will be very useful in understanding and analyzing 
calculational loading results. 

The loading model developed in this study assumes a very large 
shock impedance mismatch between the concrete and the penetrator. 
The mismatch is required because the calculations used to develop 
the loading model assume no transmission of shock waves from the 
concrete into the penetrator.  A steel penetrator would meet this 
criterion. 



SECTION III 
ELEMENT LOADING CALCULATIONS 

The HULL (REF 2) and TOODY (REF 3) hydrocodes were used to 
investigate loading on simple one- and two-dimensional element 
shapes impacting 5,000 PSI unconfined compressive strength concrete 
The simple shapes are seen in Figure 1.  In the cylindrical and 
spherical cases the radii of curvature were varied from 5 to 20 cm. 
Velocities were varied from 50 to 500 m/sec.  In the slab section 
calculations, angles between the surface normal and the velocity 
vector were varied from 0 to 60 degrees. 

In all calculations the element surface velocity was held con- 
stant and the calculation was run until a steady stress level was 
attained. 

Figure 2 shows typical results from TOODY calculations of 
slabs.  The top figure presents stress in kilobars versus time in 
microseconds on a plane wall, or slab, being driven with a velocity 
of 300 m/sec applied at an angle of 30 degrees to the surface 
normal.  Because of the hysteretic nature of the concrete stress 
versus strain relationship and the very low amount of viscosity 
used in the TOODY runs, the stress is initially very highly 
oscillatory and retains an approximately 10-percent oscillation 
after 20 microseconds.  The true solution is shown as a smooth 
curve drawn through the center of the oscillations.  The bottom 
figure presents the same information for a 300-m/sec velocity 
applied at an angle of 45 degrees to the surface normal.  There is 
a slight peak in each smoothed curve followed by a steady value 
which eventually begins a slow decay from free surface relief. 
The steady value in the top curve is 14.5 kb and it is 10.8 kb 
in the bottom curve.  With the velocity of 300 m/sec applied 
normally to the slab it was found that the steady stress was 
17.2 kb.  It is easily seen that the oblique impact values can be 
closely predicted by multiplying the normal impact value by the 
cosine of the velocity angle. 

Results from one-dimensional plane and cylindrical calcula- 
tions are seen in Figure 3.  In the figure, steady stress in kb 
is plotted versus impact velocity in m/sec.  The cylindrical 
calculations require separate curves to represent the radial and 
axial stress components.  As discussed in Section II these com- 
ponents should be related by the equation 

T axial    A r  -T-.—s- = 0.6 x radial 

It is clear in the figure that they are so related.  It is also 
clear in the figure that the achieved stress level is very nearly 
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a linear function of impact velocity.  If T is the stress loading 
in the dominant direction, then we can write 

T = PCV 

where p is the concrete's ambient density (2.2 g/cc), V is the 
impact velocity and c is an appropriate concrete sound speed. 
The plane and cylindrical one-dimensional cases and the two- 
dimensional slab cases can all be closely fit if c is set to 
2.2x105 cm/sec.  If V is also in cm/sec then T will be in units 
of dynes/cm2.  Since 109 dynes/cm2 is 1 kilobar, the conversion 
to kilobars is very simply made.  The conversion to PSI can be 
made by noting that 69,300 dynes/cm2 is 1 PSI. 

Table I lists the results of several one-dimensional and slab 
geometry cases compared to the stress predicted from 

x = 2.2 X 2.2 X 105 XVX cos 9 

where G is the angle between the velocity vector and the normal 
to the concrete surface.  Most predictions are within 10 percent 
and all are within 2 3 percent.  An even closer fit could be 
obtained were the fit made a function of the geometry {plane or 
cylindrical).  However, it will be most useful to subsequent work 
to have a fit available which is not a function of geometry and 
a 23 percent error is considered to be well within the error ex- 
pected when the loading is applied to various concrete mixtures and 
strengths.  Fortunately, also, the radius of curvature makes 
little difference in cylindrical or spherical geometries.  Thus 
the one fit can be used to describe the steady stress expected 
for all cases of interest to be encountered by penetrator surface 
elements in a terradynamics code. 

To address peak stresses which will occur prior to the steady 
stress level and any dropoff from the steady stress level requires 
three-dimensional calculations.  Of course, normal impacts of 
circular cross-section penetrators in three dimensions can be 
represented in two-dimensional axisymmetric coordinates.  Several 
circular cross-section penetrators were examined in an attempt to 
understand initial and late-time stress loading.  Figure 4 shows 
the two basic geometries examined—blunt and conically nosed 
penetrators. 

The blunt-nosed penetrators were run in HULL at 100, 200, 
300 and 500 m/sec.  Figure 5 presents plots of stress levels on 
the penetrator noses as functions of time for the specified 
velocity levels.  All penetrators were 1 cm in radius and were not 
allowed to slow down due to the applied stress.  Stress values in 
the plot were determined by summing the force on all nose zones and 
dividing by the penetrator's cross-sectional area (TT) . 

10 
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TABLE I 
TYPICAL ELEMENT LOADING CALCULATIONS 

CALCULATIONAL 
GEOMETRY 

PLANE 
PLANE 
PLANE 
PLANE 
PLANE 

VELOCITY-M/SEC 

50 
100 
200 
300 
500 

PLANE 30 degrees    300 
PLANE 45 degrees   300 

R=10CM  5C 
R-10CM 10C 

CYLINDRICAL, 
CYLINDRICAL, 
CYLINDRICAL, R=10CM 20C 
CYLINDRICAL, R=10CM 30C 
CYLINDRICAL, R-10CM 500 

CYLINDRICAL, R=5CM  30C 
CYLINDRICAL, R-5CM  50C 

SPHERICAL, R=10CM   30C 

CALCULATED PREDICTED PERCENT 
STRESS-KE STRESS- •KB ERROR 

2.7 2.4 -10.4 
5.2 4.8 - 6.9 

10.7 9.7 - 9.5 
17.2 14.5 -15.6 
31.5 24.2 -23 

14.5 12.6 -13.3 
10.8 10.3 - 4.9 

2.3 2.4 5.2 
4.8 4.8 0 
9.3 9.7 4.1 

13.7 14.5 6.0 
25.5 24.2 -5.1 

13.3 14.5 8.9 
25.4 24.2 -4.7 

12.9 14.5 -12.4 
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To understand this loading it must be examined in finer de- 
tail.  Figure 6 shows the radial, axial and hoop stresses as well 
as the mean stress (-pressure) for time history station 1, for a 
blunt projectile impacting concrete at 300 m/sec.  Time history 
station 1 is on the projectile's axis of symmetry.  Only the axial 
stress component contributes to slowing down the penetrator.  This 
axial component is initially very high and follows the cylindrical 
flow equations where the cylinder's radial direction is in the 
direction of motion of the penetrator.  This flow rapidly changes 
to a cylindrical flow pattern in which the cylinder's radius is 
normal to the direction of motion of the penetrator.  Thus the 
axial stress changes from the maximum stress component to 0.6 
times the maximum stress component as the dominant direction of 
flow changes in the concrete.  And the maximum stress itself 
changes from a peak value determined by setting c to 2.9 x 105 ' 
cm/sec. 

With this background the axial stress seen in Figure 5 can 
now be understood.  The peak values calculated from 

Tpeak = 2•2 x 2*9 x lo5 xV 

decay to steady values which are approximately given by 

To4-^,q„ = 0-6 x 2-2 x 2.2 x 105 x V steady 

where the 0.6 factor takes into account the fact that the axial 
stress is not the dominant direction.  At the time the steady 
stress level occurs, the concrete is predominantly being driven 
.radially away from the penetrator.  This steady stress value be- 
gins ultimately to decay as relief waves from the entrance free 
surface begin to overcome the axial loading. 

The effect of a conical nose on peak and steady stress 
levels can be seen in Figure 7.  In this figure axial stress is 
plotted versus time for three penetrator shapes impacting at 
300 m/sec.  The shapes are the blunt nose, a 45-degree half angle 
cone and a 60-degree half angle cone.  Stress is seen to build 
up more slowly for the conical penetrators since the force on the 
penetrator is divided by the maximum cross-sectional area to 
obtain stress, even when the entire area is not in contact with 
the concrete.  Table II provides a comparison of calculated peak 
and steady axial stress values for several blunt and conical-nosed 
penetrators.  In this table the axial stress for cones is computed 
by considering the area actually in contact with the concrete. 
The equations previously discussed for peak and steady loading 
provide very accurate predictions for all of the cases studied 
when it is noted that the penetrator's velocity, V, must be 
multiplied by sin2e, where e is the cone's half angle.  This factor 
takes into account the fact that VsinB is the velocity applied to 

15 
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the concrete and Vsin29 is the component of that velocity in the 
axial direction. 

The time required to decay from peak to steady stress levels 
can be expected to be a function of the penetrator's diameter. 
It does not appear to be a very strong function of the penetrator's 
velocity.  Figure 8 presents axial stress versus time for blunt 
penetrators with radii of 1 and 2 cm.  The time required to decay 
to steady values appears to be a linear function of the size of the 
penetrator.  Based on these two calculations and comparisons with 
the other 1-cm radius penetrator loads, it appears that the time 
to decay from peak to steady stress levels can be approximately 
expressed as 

— fi 
T = 14 xlO   x D(cm) sec. 

Where D is the penetrator's diameter, it also appears that a 
straight line adequately describes this drop  in stress level with 
time. 

Eventually, rarefactions from the entrance free surface 
reduce the stress loading on the penetrator.  All compressive 
waves generated in the concrete eventually generate relief waves 
at the free surface.  Geometrical divergence of the compressive 
waves and subsequent divergence of the relief waves generated by 
them insure that the rarefactions cannot individually reduce 
loading by any significant amount.  However, after a relatively 
long period of time these relief waves are capable of almost 
totally reducing all compressive loading on the penetrator. 

It is reasonable to suppose that the time required for 
entrance surface relief waves to significantly affect loading will 
be a function of velocity.  The penetrator will be further 
from the surface, at some given time, at a higher velocity.  And, 
in fact, the calculations indicate that this is true.  For blunt 
projectiles, at 100 m/sec velocity, loading is significantly re- 
duced by 45 ysec.  This time rises to 50 ysec for a velocity of 
200 m/sec, 60 ysec at a velocity of 300 m/sec and 70 ysec at 
500 m/sec.  These times can be expressed in terms of a number of 
wave transits from the free surface to the penetrator's centerline. 
For example, for the 100 m/sec penetrator the initial distance to 
the free surface is 0.5D where D is the diameter of the penetrator. 
At 45 microseconds the distance to the free surface is 0.5D plus 
the depth of penetration of 100 m/sec x 100 cm/m x 45 ysec = 0.45 
cm.  The average distance, therefore, from the penetrator center- 
line to the free surface is 0.5 x (1 cm + 1.45 cm) or 1.2 cm. 
Assuming a sound speed in the concrete of 2.2 x 105 cm/sec, the 
average distance of 1.2 cm represents 8.2 transits.  Similarly, 
the 200 m/sec penetrator begins to lose steady stress at 7.3 tran- 
sits, the 300 m/sec penetrator loses stress at 6.9 transits and 
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the 500 m/sec significantly loses stress at 5.6 transits. The 
number of transits is a relatively linear function of velocity 
and is expressed by 

A = 8.2 - (V-l x lO1*)   x 65 x 10"6 

where A is the number of transits and V is the velocity in cm/sec. 
The time, in seconds, at which the steady stress begins to signi- 
ficantly decay can then be expressed as 

T = A x D/(c - 0.5 x A x V) 

where D is the diameter of the projectile in cm, V is its velocity 
in cm/sec and c is the sound speed 2.2 x 105 cm/sec. 

For all of the blunt projectiles run in this study the stress 
loss per unit time is a constant 0.031 kb/ysec.  Computer time was 
not available to run any of the projectiles to the point at which 
the stress no longer decreased.  However, for the purpose of model 
building it will be assumed that loss will continue until the 
stress level is reduced to that which would occur due to simply 
pushing completely fractured concrete, i.e., JspV2. 
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SECTION IV 
THE ELEMENT LOADING MODEL 

The penetrator element loading model resulting from this 
analysis is seen in Figure 9.  The model is presented in terms 
of applied stress in dynes/cm2 versus time in seconds.  Stress 
levels are computed from V , the velocity component normal to the 

element's surface.  Stress levels are connected linearly between 
the initial time of impact and times Ti (the time of peak stress 
clearing), T2 (the time at which relief waves from the entrance 
free surface significantly affect loading) and T3 (the time at 
which applied stress results from simply pushing failed concrete). 

The majority of a penetrator's loading will result from the 
relatively long steady stress level of 0.6 x 2.2 x 2.2 x 105 x V. 
Using this predominant stress level, drag coefficients for a 
normally impacting projectile can be computed.  If A is the pro- 
jectile's cross-sectional area, V its velocity, m its mass and C 
its drag coefficient, then 

mxV=T   xA=-pxCxAx  V2/2 

or 

CD = 2T/PV
2 

D 

substituting the steady value for x yields 

'D 
C^  = 2 x 0.6 x 2.2 x 2.2 x 105 xV/(2.2 xV2) 

CD  = 2.64 x 10
5/V 

Thus Cn is an inverse function of velocity.  This means that as 

the projectile slows its drag coefficient increases.  Figure 9 is 
a plot of this drag coefficient for blunt projectiles versus pro- 
jectile velocity.  It is seen that Cn significantly increases as 
velocity decreases below 200 m/sec. 

This is an interesting function for Cr since it means that 

projectiles will actually eventually stop as opposed to the endless 
trajectory resulting from a constant Cn model. 

The drag eguation for blunt projectiles becomes 

V = -p x C  x A x V2/(2 x m) 

=   2.2   x   1.2   x   2.2   x   105   xAxV/(2   xm) 

=   2.9   x   105   xAx  V/m 
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which has the solutions 

(-2.9  x 105 x A/m)t 
V = V e o 

s 

and 

= (V-V ) / (-2.9 x 105 x A/m) 

Where s is the depth of penetration, V is the initial velocity 

and V is the velocity at time t.  These equations predict a finite 
depth of penetration since substitution of V = 0 in the equation 
for s yields 

S..  , = V  / (2.9 x 105 x A/m) 
final   o 

Similar equations can be developed for conically nosed penetrators 
by simply substituting Vsin2e for V, where 0 is the cone's half 
angle. 

These equations were used to predict penetration depth at 
various times for blunt projectiles run in HULL with forces being 
allowed to actually slow the projectiles.  Two cases were run.  In 
each case the projectile weighed 500 gm and its cross-section area 
was 3.14 cm2.  In the first case impact occurred at 500 m/sec 
and HULL predicted a velocity of 393 m/sec at a time of 150 ysec 
and a depth in the seiri-infinite concrete of 6.57 cm.  The simpli- 
fied equations for velocity and depth predicted a velocity of 
380 m/sec and a depth of 6.25 cm at 150 ysec.  This is less than a 
5-percent error in each quantity.  In the second case, the projec- 
tile impacted at 200 m/sec and the HULL run predicted a velocity 
of 150 m/sec and a depth of 3.31 cm at a time of 193 ysec.  The 
simple model predicted a velocity of 141 m/sec and a depth of 3.25 
cm at a time of 193 ysec.  These predictions are again within a 
5-percent error. 
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SECTION V 
RECOMMENDED FUTURE WORK 

Several critical technical issues should be resolved prior 
to application of the suggested loading model in simplified 
terradynamics codes.  These issues are discussed below. 

The existence of the 0.6 stress multiplication factor should 
be verified in three-dimensional oblique flow fields.  It is be- 
lieved that the factor will be valid in these flows since the 
projectile element is pushing concrete basically radially away 
from itself. 

The time at which the steady stress begins to decrease due 
to entrance surface relief waves should be investigated in 
three-dimensional oblique impacts.  The simplified equation used 
in the model described in this report assumes a single distance 
from the element to the surface.  In an oblique impact there are 
a multitude of such distances associated with every element. 

Effects of interfering flow fields between elements must 
also be investigated in three-dimensional impacts.  The loading 
model assumes that flow past neighboring elements has no influence 
on the element in question. 

The model assumes a semi-infinite concrete thickness.  There 
are, of course, no such concrete structures in this world. 
Loading in penetration of a finite thickness concrete slab will 
differ from semi-infinite loading as soon as the initial compres- 
sive wave generated at impact reflects as a tensile wave from the 
exit free surface and reaches the projectile nose. 

Further work on this model should concentrate on the loading 
perturbations seen because of the concrete slab's finite thickness, 
When this stress decrement is accounted for, the three-dimensional 
effects mentioned above should be addressed. 
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